記事内に広告を含みます

大量のログをリアルタイムに分析できたらビジネスチャンスが広がるのに…

工場の機械やIoTデバイスのセンサーデータをすぐに処理して生産性を改善したい…
現代のビジネスにおいて、データはまさに”油田”です。
しかし、そのデータをリアルタイムで処理・分析し、価値あるインサイトを迅速に引き出すことは、多くの企業にとって大きな課題となっています。
特に、ログデータ、クリックストリーム、IoTデータのような「ストリーミングデータ」は、その量と速度から、従来のバッチ処理では対応が追いつきません。
そんな悩みを抱える方に最適なソリューションが、AWSが提供するAmazon Kinesisです。
この記事を読めば、Kinesisに関する疑問が解消され、以下の点が明確になります。
- Amazon Kinesisがそもそも何をするためのサービスなのか
- 混同しやすい4つの主要なKinesisサービス(Data Streams, Data Firehose, Data Analytics, Video Streams)の具体的な役割と違い
- どのようなビジネスシーンでKinesisが真価を発揮するのか
- 気になる料金体系の仕組みとコスト感
- 導入前に知っておきたいメリットとデメリット
この記事は、特に「リアルタイムデータ処理基盤を構築したいけれど、Kinesisについて詳しく知らない」「どのKinesisサービスを使えばいいか分からない」と考えているインフラエンジニア、開発者、データアナリストの方々に向けて、専門用語を極力避け、分かりやすく解説することを目指しています。
結論として、Amazon Kinesisは、大量のストリーミングデータをリアルタイムで、かつスケーラブルに収集・処理・分析するための強力なAWSマネージドサービス群です。インフラ管理の手間を大幅に削減し、データ活用の可能性を大きく広げます。
Kinesisについて学びたい方は、日本最大級のAWS学習コンテンツであるCloudTechがおすすめです。

当サイトの記事は、現役AWSエンジニアによる監修のもと運営されております。
AWSの学習におすすめのサービス
コードをコピーする→コピーしました!
philosophy2305
Contents CLOSE
- Amazon Kinesisとは? リアルタイムデータストリーミングの基盤
- Kinesisファミリー:4つの主要サービスを理解する
- Kinesis Data Streams: カスタム処理が必要なデータストリーム
- Kinesis Data Firehose: データレイクへの簡単ロード
- Kinesis Data Analytics: SQLでストリームデータをリアルタイム分析
- Kinesis Video Streams: 動画ストリームの処理と分析
- Amazon Kinesisの料金体系
- Kinesisの代表的なユースケースとアーキテクチャ例
- Amazon Kinesisの始め方
- Kinesisを使うメリット・デメリット
- まとめ
- AWSをコスパよく学ぶならCloudTech
- CloudTechでAWSの学習を効率よく始める
Amazon Kinesisとは? リアルタイムデータストリーミングの基盤

Amazon Kinesisは、AWSが提供する一連のサービスであり、リアルタイムで生成され続ける膨大なデータ(ストリーミングデータ)を効率的に収集し、処理・分析するためのプラットフォームです。
ストリーミングデータとは、Webサーバーのアクセスログ、アプリケーションのイベントログ、株価情報、SNSの投稿、IoTデバイスからのセンサーデータなど、絶え間なく流れ込んでくるデータのことです。
従来は、これらのデータを一度データベースやストレージに溜め込み、夜間などにまとめて処理する「バッチ処理」が一般的でした。
しかし、それではデータの鮮度が落ちてしまい、「今起きていること」を把握したり、即座に対応したりすることが困難でした。
Amazon Kinesisは、この課題を解決するために生まれました。Kinesisを使うことで、以下のようなことが可能になります。
- データのリアルタイム収集: 大量のデータを低遅延で確実に取り込む。
- リアルタイム処理・分析: 取り込んだデータをすぐに加工・分析し、異常検知やインサイト抽出を行う。
- スケーラビリティの確保: データ量の増減に合わせて、処理能力を自動または手動で柔軟に調整する。
- 運用負荷の軽減: サーバーの管理やソフトウェアのアップデートといった面倒な作業をAWSに任せる。
つまり、Kinesisはリアルタイムデータ処理に必要なインフラ基盤を提供してくれるサービスであり、開発者はデータ活用のためのアプリケーション開発に集中できるようになります。
Kinesisファミリー:4つの主要サービスを理解する

Amazon Kinesisは単一のサービスではなく、用途に応じて使い分ける4つの主要なサービスで構成されています。
一部では「Kinesisファミリー」と呼ばれています。それぞれの特徴を理解することが、Kinesisを効果的に活用する第一歩です。
- Kinesis Data Streams: 柔軟なカスタム処理が可能なデータストリームの収集・保持サービス。
- Kinesis Data Firehose: ストリーミングデータをS3やRedshiftなどの宛先に簡単に配信するサービス。
- Kinesis Data Analytics: SQLやApache Flinkを用いてストリーミングデータをリアルタイムで分析するサービス。
- Kinesis Video Streams: 動画データのストリーミングに特化した収集・保存・処理サービス。
Kinesis Data Streams: カスタム処理が必要なデータストリーム

- 機能・特徴: 大量のストリーミングデータを低遅延で収集し、一時的に保持(デフォルト24時間、最大365日)する、Kinesisファミリーの中核的なサービス。
データ処理のスループット(処理能力)は、「シャード」という単位で管理され、シャード数を増減させることでスケール調整が可能です。(1シャードあたり書込1MB/秒 or 1000レコード/秒、読込2MB/秒)
保持されたデータは、EC2インスタンス上で動く自作アプリケーションやAWS Lambda関数、Kinesis Data Analyticsなど、様々な「コンシューマー(データ消費者)」が自由に読み出して処理できます。
同じデータストリームを複数のコンシューマーが並行して読み取れるのが大きな特徴です。
- リアルタイム分析アプリケーションのデータ入力源
- 複数のシステムで利用するログやイベントデータの一元的な集約
- クリックストリーム解析によるユーザー行動のリアルタイム把握
- IoTデバイスからの大量データの受け皿
Kinesis Data Streamsのメリット
- コンシューマー側で処理ロジックを自由に実装できる柔軟性の高さ
- 高いスケーラビリティとリアルタイム性
- 複数のアプリケーションでデータを共有できる
Kinesis Data Streamsのデメリット
- データを処理するアプリケーション(コンシューマー)を自分で開発・運用する必要がある
- データ量に応じたシャード数の管理(サイジングやスケーリング)が必要
- データの送信先は規定されておらず、後続の処理フローを設計する必要がある
Kinesis Data Firehose: データレイクへの簡単ロード

- 機能・特徴: Kinesis Data Streamsや他のソースからのストリーミングデータを、指定した送信先へ簡単に、かつほぼリアルタイムで配信することに特化したサービス。
主な送信先は Amazon S3 (データレイク)、Amazon Redshift (データウェアハウス)、Amazon Elasticsearch Service (ログ分析・検索)、Splunk (統合ログ管理) などです。HTTPエンドポイントへの送信も可能です。
フルマネージド型で、シャード管理のようなインフラ運用は一切不要。データ量に応じて自動でスケールします。
配信前に、AWS Lambda関数を使ってデータを変換したり、GZIPなどで圧縮したり、暗号化したりする機能が組み込まれています。
データを一定量または一定時間バッファリングしてから送信するため、送信先への負荷を軽減できます。
- サーバーログやアプリログをS3に収集・アーカイブ
- IoTデータをRedshiftにロードしてBIツールで分析
- WebサイトのアクセスデータをElasticsearch Serviceに送ってリアルタイムダッシュボードを構築
Kinesis Data Firehoseのメリット
- 設定が非常に簡単で、コーディングなしでも利用開始できる
- インフラ管理が不要(フルマネージド、自動スケーリング)
- データ変換・圧縮機能が組み込みで便利
- 主要なAWSデータストアへの連携が容易
Kinesis Data Firehoseのデメリット
- Data Streamsのような柔軟なカスタム処理はできない(Lambdaでの簡単な変換が主)
- バッファリングのため、ミリ秒単位の厳密なリアルタイム性は保証されない
- 基本的にデータは単一の送信先に送られる(コンシューマーはFirehose自身)
Kinesis Data Analytics: SQLでストリームデータをリアルタイム分析

- 機能・特徴: Kinesis Data StreamsやKinesis Data Firehoseをデータソースとして、流れてくるデータをリアルタイムで継続的に処理・分析するためのサービス。
分析ロジックは、多くのエンジニアに馴染み深い標準SQLで記述できます。
これにより、特定の時間枠での集計(例:過去1分間のアクセス数)、異常値の検出、特定の条件に基づくデータのフィルタリングなどをリアルタイムに行えます。
より高度でステートフル(状態を持つ)な処理が必要な場合は、Apache Flink(Java/Scalaアプリケーション)を利用することも可能です。
分析結果は、別のKinesisストリーム、Lambda、Firehoseなどを通じて、他のAWSサービスやアプリケーションに送ることができます。こちらもフルマネージドで、インフラ管理は不要です。
- 株価やセンサーデータなどの時系列データのリアルタイム分析
- アプリケーションのパフォーマンスやエラーのリアルタイムモニタリングとアラート発報
- オンラインゲームのランキング(リーダーボード)のリアルタイム更新
- 金融取引などにおける不正行為のリアルタイム検知
Kinesis Data Analyticsのメリット
- SQLで手軽にリアルタイムストリーム分析を開始できる
- Apache Flinkにより高度なストリーム処理にも対応可能
- インフラ管理が不要なフルマネージド
Kinesis Data Analyticsのデメリット
- SQLだけでは対応できない複雑な分析ロジックにはFlinkの知識が必要となり、学習コストがかかる
- 比較的新しいサービス分野のため、ベストプラクティスやトラブルシューティング情報が他の枯れたサービスほど多くない場合がある
Kinesis Video Streams: 動画ストリームの処理と分析

- 機能・特徴: セキュリティカメラ、スマートフォン、ドローン、ボディカメラなど、様々なデバイスから動画データをAWSへ安全かつスケーラブルに取り込み、保存、処理するために特化したサービス。
取り込んだ動画は、ライブまたはオンデマンドで再生したり、Amazon Rekognition Video(動画認識)やAmazon SageMaker(機械学習)といった他のAWSサービスと連携して、高度な動画分析(顔検出、物体追跡など)を行ったりできます。
WebRTC(Web Real-Time Communication)機能をサポートしており、Webブラウザやモバイルアプリとの間で低遅延な双方向のライブメディアストリーミングを実現できます。
データは暗号化され、耐久性の高いストレージに保存されます。
- スマートホームや施設の監視カメラ映像のクラウド保存とリアルタイム分析
- 製造ラインのカメラ映像を用いた品質管理や異常検知
- ライブビデオストリーミング配信プラットフォームのバックエンド
- ウェアラブルカメラからの映像のリアルタイム共有と分析
Kinesis Video Streamsのメリット
- 大量の動画ストリームをセキュアかつ効率的に扱える
- AWSのAI/MLサービスと連携し、インテリジェントな動画分析が可能
- WebRTCによるインタラクティブな機能開発
Kinesis Video Streamsのデメリット
- 動画データ特有の技術要素(コーデック、帯域幅、遅延など)への理解が必要
- ユースケースが他のKinesisサービスに比べて限定的
これら4つのサービスは独立して利用することも、組み合わせてパイプラインを構築することも可能です。
例えば、「Data Streamsでデータを収集 → Data Analyticsでリアルタイム分析 → 分析結果をLambdaで処理し、生データはFirehoseでS3に保存」といった連携が一般的です。
Amazon Kinesisの料金体系

Amazon Kinesisの料金は、利用するサービスや設定によって異なりますが、基本的には実際に使用した分だけ支払う従量課金制です。初期費用はかかりません。
Kinesis Data Streams
- シャード時間: プロビジョニング(確保)したシャードの数に応じた時間単位の料金。
- PUTペイロードユニット: ストリームに書き込むデータの量(25KB単位)に応じた料金。
- データ保持期間(オプション): デフォルトの24時間を超えてデータを保持する場合の追加料金。
- 拡張ファンアウト(オプション): 高速なデータ読み取り機能利用時の追加料金。
Kinesis Data Firehose
- 取り込みデータ量: Firehoseに取り込まれたデータの総量(GB単位)に応じた料金。
- データ形式変換(オプション): Parquet/ORC形式への変換機能利用時の追加料金。
- VPC配信(オプション): VPC内の送信先へ配信する場合の追加料金。
Kinesis Data Analytics
- Kinesis Processing Unit (KPU) 時間: アプリケーションの実行に必要なコンピューティングリソース(メモリとvCPUの組み合わせ)の時間単位の料金。
- 実行中のアプリケーションストレージ(Flinkのみ): Apache Flinkアプリケーションが使用する状態ストレージに対する料金。
- 永続的なアプリケーションバックアップ(オプション): アプリケーションの状態をバックアップする場合のストレージ料金。
Kinesis Video Streams
- 取り込みデータ量: ストリームに取り込まれた動画データの総量(GB単位)に応じた料金。
- 消費データ量: ストリームから読み出された動画データの総量(GB単位)に応じた料金。
- 保存データ量: ストリームに保存されている動画データの総量に応じた月額料金(GB/月単位)。
- WebRTC関連: アクティブなシグナリングチャネル数やTURNストリーミング時間に応じた料金。
無料利用枠
AWSには無料利用枠があり、Kinesisの一部のサービスも対象となる場合があります(条件あり)。例えば、Data Streamsのシャード時間、Firehoseのデータ取り込み量、Data AnalyticsのKPU時間に、一定の無料枠が設けられていることがあります。
初めて利用する際は、無料枠の範囲で試してみるのがおすすめです。
コスト削減のヒント

- Data Streams: データ量に合わせてシャード数を適切に調整する(多すぎても少なすぎても無駄が生じる)。オートスケーリングを活用する。
- Firehose: 送信するデータを圧縮する。不要なデータ変換は行わない。
- Data Analytics: アプリケーションに必要なKPU数をモニタリングし、最適化する。
- 共通: 不要になったストリームやアプリケーションは速やかに削除する。
料金体系は変更される可能性があるため、必ずAWS公式サイトの最新情報を確認してください。
Kinesisの代表的なユースケースとアーキテクチャ例

Kinesisが実際にどのように使われているのか、具体的なユースケースと簡単な構成例を紹介します。
Web/Appログのリアルタイム収集・分析
目的: 複数のサーバーから大量に出力されるログを集約し、リアルタイムでエラーを検知したり、アクセス状況を監視したりしたい。
構成例:
- サーバー上のエージェント (Kinesis Agent, Fluentdなど) がログを Kinesis Data Streams に送信。
- Kinesis Data Analytics (SQL) がストリームを監視し、特定のエラーログが出現したら即座に検知して SNS (通知サービス) 経由でアラートを発報。
- 同時に Kinesis Data Firehose が Data Streams から全ログを受け取り、S3 (ストレージ) に長期保存用に転送。
- S3に溜まったログは、後で Amazon Athena (SQLクエリサービス) を使って分析したり、Elasticsearch Service + Kibana で可視化したりする。
リアルタイムダッシュボードの構築:
目的: WebサイトのPV数、商品の売上、サービスの利用状況などをリアルタイムでグラフ化し、ビジネスの状況を即座に把握したい。
構成例:
- アプリケーションがユーザー行動や売上データを Kinesis Data Streams に送信。
- AWS Lambda 関数が Data Streams からデータを読み取り、必要な集計処理(例:1分ごとのPV数)を実行。
- 集計結果を Amazon DynamoDB (NoSQL DB) や Amazon Timestream (時系列DB) に書き込む。
- Amazon QuickSight (BIサービス) や自作のダッシュボードアプリケーションがデータベースからデータを読み取り、リアルタイムでグラフを更新表示する。
IoTデータの収集と活用
目的: 大量のIoTデバイス(工場センサー、スマートメーター、コネクテッドカーなど)から送られてくるデータを収集し、機器の異常予兆検知や運用の最適化につなげたい。
構成例:
- IoTデバイスは AWS IoT Core (IoT管理サービス) を介して、センサーデータを Kinesis Data Firehose に送信。
- Firehoseはデータを前処理(簡単な変換や圧縮)しつつ、S3 に保存。
- 別の Kinesis Data Analytics アプリケーションが Firehose (または別途 Data Streams) からデータを読み込み、リアルタイムで異常値を検知。
- S3に蓄積されたデータは Amazon SageMaker (機械学習サービス) で分析し、故障予測モデルなどを構築する。
- 検知された異常は AWS Lambda をトリガーし、メンテナンス担当者への通知や、デバイスへの制御コマンド送信を行う。
これらはあくまで基本的な例であり、Kinesisと他の多様なAWSサービスを組み合わせることで、より高度で複雑なリアルタイムデータ処理パイプラインを構築することが可能です。
Amazon Kinesisの始め方

「理屈はわかったけど、実際にどうやって使うの?」という方のために、ここでは最も手軽に試せる Kinesis Data Firehose を使って、データをS3バケットに送る手順の概要を紹介します。
- AWSマネジメントコンソールへログイン: AWSアカウントが必要です。
- Kinesisサービスを選択: サービス一覧から「Kinesis」を検索し、選択します。
- Data Firehoseのダッシュボードへ移動: 左メニューから「Data Firehose」を選びます。
- 「配信ストリームを作成」をクリック
- ソースと送信先の選択: ソース (Source): 「Direct PUT」を選択(プログラム等から直接データを送る場合)。送信先 (Destination): 「Amazon S3」を選択。
- 配信ストリーム名の設定:任意の名前を入力します (例:
my-log-delivery-stream
)。 - 送信先設定 (Destination settings): データを保存したい S3バケット を選択または新規作成します。必要に応じて、バケット内のプレフィックス(フォルダのようなパス)やエラー出力用のプレフィックスを指定します。
- データ変換・圧縮など(オプション):「Transform and convert records」セクションで、Lambdaによるデータ変換や、ファイル形式の変換(Parquet/ORC)、圧縮(GZIPなど)を設定できます。今回は「Disabled」のままで進めます。
- バッファリング設定: 「Buffer hints」で、S3へ書き込むデータのサイズ(例: 5 MiB)や時間間隔(例: 60秒)を設定します。どちらかの条件を満たしたタイミングでデータがS3へ転送されます。デフォルト値で問題なければそのままでOKです。
- 詳細設定: IAMロール(FirehoseがS3等にアクセスするための権限)などを設定します。通常は自動で適切なロールを作成してくれるオプションを選択すれば問題ありません。
- 設定内容を確認し、「Create delivery stream」をクリック: これでFirehoseの配信ストリームが作成されます(数分かかることがあります)。
- テストデータの送信: 作成された配信ストリームの画面にある「Test with demo data」機能を使うか、AWS CLIやSDKを使ってデータを送信してみます。
- S3バケットの確認: 設定したバッファ間隔が経過した後、指定したS3バケットにデータファイルが作成されていることを確認します。
このように、Kinesis Data Firehoseを使えば、コーディングなしでも簡単にストリーミングデータのパイプラインを構築できます。Data StreamsやData Analyticsはもう少し設定や準備が必要ですが、基本的な考え方は同様です。
Kinesisを使うメリット・デメリット
最後に、Amazon Kinesisを導入する上でのメリットと、考慮すべきデメリットを整理しておきましょう。
Kinesisを使うメリット

- リアルタイム性の実現: ビジネスの変化に即応できる、鮮度の高いデータ活用が可能になる。
- 高いスケーラビリティ: データ量の急増にも容易に対応でき、パフォーマンスボトルネックを防げる。
- 運用負荷の大幅削減: サーバー管理やパッチ適用から解放される(フルマネージド)。
- 高可用性と耐久性: AWSインフラにより、データの損失リスクが低く、安定稼働が期待できる。
- 豊富なAWSサービス連携: 他のAWSサービスと組み合わせることで、高度なデータパイプラインを構築できる。
- コスト効率: 使った分だけの従量課金で、スモールスタートが可能。
- 柔軟な選択肢: 4つのサービスから目的に最適なものを選択・組み合わせできる。
Kinesisのデメリット

- 学習コスト: ストリーミング処理の概念や各サービスの詳細な仕様、特にData Streamsのシャード管理やData Analytics (Flink) のプログラミングには、ある程度の学習が必要。
- 設定の複雑さ: ユースケースによっては、IAM権限、ネットワーク設定、連携サービスとの調整など、設定項目が多く複雑になりがち。
- コスト管理の重要性: 従量課金のため、データ量や処理量が増えると想定外のコストになる可能性も。利用状況のモニタリングと最適化が不可欠。
- AWSへの依存: AWSプラットフォームに最適化されているため、他のクラウドやオンプレミスへの移行が難しくなる可能性がある(ベンダーロックイン)。
- 完全なリアルタイムではないケース: Firehoseのバッファリングやネットワーク遅延など、ユースケースや設定によってはミリ秒レベルの厳密なリアルタイム性が保証されない場合がある。
これらの点を理解し、技術力、予算、そして実現したいことを照らし合わせて、Kinesisが最適な選択肢かどうかを判断することが重要です。
まとめ

本記事では、Amazon Kinesisの基本概念から、Kinesisファミリーを構成する4つの主要サービス(Data Streams, Data Firehose, Data Analytics, Video Streams)の詳細、料金体系、具体的なユースケース、簡単な始め方、そしてメリット・デメリットに至るまで、幅広く解説しました。
Amazon Kinesisは、現代のデータ駆動型ビジネスに不可欠なリアルタイムデータ処理を、AWS上で効率的かつスケーラブルに実現するための強力なサービス群です。
ログ分析基盤の構築、IoTデータの活用、リアルタイムなモニタリングダッシュボードの実現など、その応用範囲は非常に広く、多くの企業のデジタルトランスフォーメーションを支えています。
どのサービスを選ぶべきか迷ったら、以下のポイントを確認してみてください。
- 柔軟なカスタム処理がしたいなら → Kinesis Data Streams
- S3などへ簡単にデータを送りたいなら → Kinesis Data Firehose
- SQLで手軽にリアルタイム分析したいなら → Kinesis Data Analytics
- 動画データを扱いたいなら → Kinesis Video Streams
これらのサービスを適切に組み合わせることで、これまで構築・運用が困難だったリアルタイムデータパイプラインを、より低コストかつ迅速に実現できる可能性があります。
さらに一歩進んでKinesisを学びたいと考えたら、CloudTechで実践的なスキルを身につけるのがおすすめです。
AWSをコスパよく学ぶならCloudTech

CloudTech(クラウドテック)は、元GMOの主任エンジニアであるくろかわ こうへいさんが提供するAWSの学習に特化したオンライン学習プラットフォームです。
AWSのオンライン学習スクールの規模としては日本最大級で会員数は2025年5月時点で7,000名以上となっています。
CloudTechなら自分のライフスタイルに合わせて、どこよりもコスパよくAWSの学習が行えます。
- AWS認定資格に最短効率で合格できる
- ハンズオン学習で実践的なスキルが得られる
- 未経験からAWSエンジニアにキャリアアップが目指せる
- AWS専門コミュニティで有益な情報交換ができる
- 信頼と実績のある教材で学べる
「AWSを体系的に学びたい」「最短効率でAWS認定資格を取得したい」「AWSの実践的なスキルを身につけたい」と悩んでいる方は、CloudTechがおすすめです。

コスパ良くAWSを学ぶなら、ココで決まり!
CloudTechは日本最大級のAWSに特化したオンライン学習サービスです。SAAやSAPをはじめとする全12資格に対応。AWS認定資格の一発合格率は90%以上となっています。
今なら限定割引クーポンあり
コードをコピーする→コピーしました!
philosophy2305
資格会員 | 5,480円⇨4,980円 (90日間) (全AWS認定資格の問題のみ利用可能) |
基本会員 | 13,700円→12,450円 (90日間) (資格会員の内容 + 基本コンテンツが全て利用可能) |
永久会員 | 54,800円→49,800円 (買い切りプラン/全てのコンテンツが追加料金なしで永久に利用可能) |
対応資格 | AWS 全12資格 |
資格の一発合格率 | 90%以上 |
AWS講義動画の数 | 320本以上 |
ハンズオン学習 | あり |
学習のしやすさ | 全ての演習問題に詳細な解説あり ブックマーク機能で復習が簡単 |
会員制コミュニティ | 実績のあるAWSエンジニアが多数在籍 豊富な合格体験記で一次情報を入手 |
優良企業への転職サポート | あり |
おすすめできる方 | AWSを体系的に学びたい方 最短効率で資格取得を行いたい人 ハンズオン学習でスキルを身につけたい方 |
※クーポンコードは予告なく終了する場合があります。
プロによる解説だから未経験者でも続けられる!

CloudTech(クラウドテック)を運営するくろかわ こうへいさんは、Youtubeで6年以上もAWSに関する情報を発信しているため、解説がプロ級に分かりやすくなっています。
すでに執筆・監修した書籍は7冊以上です。
Amazonでのレビューは平均4.2を超えており、分かりやすい解説には定評があります。

CloudTechのAWS学習コンテンツは、動画ベースで作成されており、1本あたりの動画は平均7分程度で構成されています。
- 倍速再生ができる (0.5〜2.0倍)
- 自動生成による字幕に対応(日本語)
- バックグラウンド再生に対応
通勤時に音声だけで学習することも可能です。復習をする際には再生速度を上げて効率よく学習しましょう。

3年ほどCloudTechを利用して感じたのは、学習のしやすさです。
AWSのサービスごとに学習する内容が選べる上に、スマホ表示にも対応しています。
未経験者でも挫折することのないようイラストや図が豊富に使われているのもオススメできるポイントです。
本番レベルの演習問題が多数収録!

CloudTechには、参考書を圧倒的に上回る量の演習問題があります。
CLF | 420問 | SAP | 300問 |
AIF | 124問 | DOP | 190問 |
SAA | 230問 | ANS | 350問 |
SOA | 230問 | SCS | 380問 |
DVA | 260問 | MLS | 170問 |
DEA | 80問 | MLA | 84問 |
- 演習問題は本番と同じレベル
- 全ての問題には詳細な解説が用意されている
- 問題によっては図解・動画による解説あり
演習問題を繰り返すことが合格への最短ルートです。

間違えた問題はブックマーク機能を活用して本番試験の直前に見直しましょう。
CloudTechの演習問題は本番試験と同じ出題形式です。
演習問題のレベルも本試験と同様な上に解説も丁寧に作られています。
定期的に問題の内容も見直されているのでトップレベルの演習問題を求めるなら迷わずCloudTechを選びましょう。
資格取得に加えてハンズオン学習で実践的なスキルが得られる!

CloudTechでは、基本会員以上になるとAWS講義動画でハンズオン学習ができます。
ハンズオン学習で学べる内容はどれも現場で即戦力となるものばかりで、AWSを業務で活用したいなら理解しておきたい内容です。
ハンズオン学習で学べる内容
- IAMロールをEC2にアタッチして権限の変化を確認する
- SQSハンズオン概要説明/標準キュー/FIFOキュー/DLQの動作確認
- CloudTrail有効化/整合性の検証
- Lambda同期呼び出し/非同期呼び出し
- CloudWatchでログ監視をする
- 自宅PCからEC2にログインしよう
- IAMポリシーをグループにアタッチして表示の変化を確認する
- Aurora作成-接続/手動フェイルオーバーによる動作確認/レプリカオートスケーリング/クローン取得
- SSM セッションマネージャーで接続/RunCommand実行
- CloudWatchエージェントインストールのハンスオン
- Systems Manager(SSM)パラメーターストア/デモ(CloudWatch Agentインストール)
- SQS標準キュー/FIFOキュー/DLQの動作確認
- Step Functionsを使用したLambdaのハンドリング
- GlueとAthenaを組みあわせたハンズオン
- マルチアカウント/Organizationsメンバーアカウント作成とスイッチロール設定
- AWS STS/sts:AssumeRoleアクション深掘りハンズオン
- バージョン管理/エイリアス/加重エイリアス
- FSx for Windowsを複数のWindowsインスタンスからアタッチ
- タグごとに課金額を集計/タグの一括編集/リソースグループの作成
- 基本的なブログサービスを構築する(シングル構成)
- EC2再起動後に ブログ表示に時間がかかる、 および表示が崩れる場合の対応手順
- 冗長性のあるブログサービスを構築する(冗長構成)
- スケーラビリティのあるブログサービスを構築する
- 独自ドメインを設定する / 障害時はSORRYページへ通信を流す
- HTTPS通信でアクセス可能にする
- キャッシュサーバーを配置する
AWSの他にもインフラやPython、Goといったキャリアアップに活かせるスキルが講義動画で学べます。
- インフラの基礎 (Linuxサーバー、Windowsサーバー、ネットワーク)
- Python (LambdaでPythonを動かす、Python &Lambdaの基本構文、DB操作、APIの作成)
- AWSで学ぶGo実践講座 (基本文法、条件分岐、ポインタ、SQLの基本・応用)
ハンズオン学習を進めていく中で、調べても分からない内容については、会員制コミュニティ(技術質問サポート)で質問することが可能です。
CloudTechのメリット・デメリット

CloudTechのメリット
- プロによる解説だから初心者でも安心して学べる
- 動画ベースの教材だから場所を選ばない
- 本番レベルの演習問題で資格対策ができる
- ハンズオン学習でAWSの確かな技術力が身につく
- AWSを使った優良企業への転職サポートが受けられる
未経験者であってもCloudTechなら、演習問題を繰り返すだけでAWS認定資格への合格が狙えます。
将来的にAWS クラウドエンジニアへの転職を狙っている方は転職サポートを活用してみてください。
また、くろかわ こうへいさんによる無料のkindle書籍でAWSの基本的なサービスを復習しましょう。
CloudTechのデメリット
- 自分で学習を進める必要がある
CloudTechは一般的な学習スクールと違って担当者がつくわけではありません。
ある程度の自走力が求められます。
仕事で疲れて勉強できない場合は、ソファで横になりながら動画だけでも再生しましょう。
決まった時間に勉強を開始する習慣を身に付けたい場合には、スマホのリマインダーを活用してみてください。
CloudTechの評判は良い・悪い? リアルな口コミと評判

Xには、CloudTechのおかげでAWS認定資格に合格できたとの報告が多数あります。
CloudTechの演習問題でDVAに無事合格!

CloudTechのおかげでSAPに合格!

未経験からAWSエンジニアへ見事転職!


Xには、CloudTechのおかげで資格取得ができたとの声が数多く報告されています。
CloudTechでAWSの学習を効率よく始める

CloudTechの登録方法を分かりやすく解説します。
まずはCloudTechへアクセスします。

そのまま下部へ進むとプランが選べます。
ページの真ん中あたりで料金プランが表示されています。

- 資格会員: 資格取得だけを目的とする方
- 基本会員: 資格取得+AWSの体系的な学習、コミュニティへの参加を希望する方
- 永久会員: AWSエンジニアを目指す方や複数の資格を取得して3年後に更新も行いたい方
将来的に複数の資格を同時に保持したい方は、資格更新のタイミングもあるため永久会員が最もお得となっています。
また、未経験からSAAを目指す場合にも3ヶ月程度かかるため永久会員がベストな選択肢になります。

お好みのプランを選んで「今すぐ購入する」を押します。
当サイトのクーポンコードを利用することで通常よりもお得な割引価格で購入できます。
- 資格会員:5,480円⇨4,980円 (500円 OFF)
- 基本会員:13,700円⇨12,450円 (1,250円 OFF)
- 永久会員:54,800円⇨49,800円 (5,000円 OFF)
コードをコピーする→コピーしました!
philosophy2305

希望のプランを確認して「割引コードをお持ちですか?」から割引コードの入力を選びます。

割引コードの入力ができるので、当サイトのクーポンコードを入力後に適用を選びます。
コードをコピーする→コピーしました!
philosophy2305

「割引コードが適用されました。」とメッセージが表示されれば割引価格で購入可能です。
アカウント情報を入力して、決済方法を選びます。
- ユーザー名
- パスワード
- メールアドレス
- クレジットカード
- PayPal
クーポン価格が適用されていることを再確認したら、利用規約に同意して「送信して購入手続きへ」を押します。
お支払いが終わると、決済完了のメールが届きます。

メールに記載されているURLから学習を開始しましょう。